1370 NOTIZEN

A Note on Rotation Matrices

B. GROSSWENDT and W. WITSCHEL

Physikalisch-Technische Bundesanstalt, Braunschweig (Z. Naturforsch. 27 a, 1370 [1972]; received 2 June 1972)

Rotation matrices $d_{m,m'}^{(j)}(\Theta)$ find wide applications in molecular and nuclear theory. They are known since the famous work of WIGNER ¹ on the rotation group. As the derivation is complicated and needs group theory, a simple algebraic method will be valuable. The present note gives a simplification of Schwinger's solution of $d_{m,m'}^{(j)}(\Theta)$ avoiding the unnecessary complicated generating function trick ². We follow the customary notation and repeat for completeness the defining equations.

The problem is the evaluation of the matrixelement

$$d_{m,m'}^{(j)}(\Theta) = \langle j m \mid \exp(-i \Theta \hat{J}_{y}) \mid j m' \rangle. \tag{1}$$

SCHWINGER 2 introduced a boson representation of angular momentum in terms of the two dimensional isotropic harmonic oscillator creation and annihilation operators \hat{a}_\pm^+ and \hat{a}_\pm :

$$\hat{J}_{+} = \hat{J}_{x} + i \hat{J}_{y} = \hat{a}_{+}^{+} \hat{a}_{-},$$
 (2)

$$\hat{J}_{-} = \hat{J}_{x} - i \hat{J}_{y} = \hat{a}_{-}^{+} \hat{a}_{+},$$
 (3)

$$\hat{J}_z = \frac{1}{2} (\hat{a}_+^+ \hat{a}_+ - \hat{a}_-^+ \hat{a}_-), \tag{4}$$

and

$$|jm'\rangle = [(j+m')! (j-m')!]^{-1/2} (\hat{a}_{+}^{+})^{j+m'} (\hat{a}_{-}^{+})^{j-m'} |00\rangle.$$
 (5)

By substitution, \hat{J}_y is

$$\hat{J}_{y} = \frac{1}{2i} \left(\hat{a}_{+}^{+} \hat{a}_{-} - \hat{a}_{-}^{+} \hat{a}_{+} \right). \tag{6}$$

If the identity operator \hat{I}

$$\hat{I} = \exp(i \Theta \hat{J}_y) \exp(-i \Theta \hat{J}_y)$$
 (7)

is introduced the problem of calculating $d_{m,m'}^{(j)}(\Theta)$ is reduced to a canonical transformation

$$d_{m,m'}^{(j)}(\Theta) = [(j+m')! (j-m')!]^{-1/2}$$

$$\langle jm \mid \exp(-i\Theta \hat{J}_y) (\hat{a}_+^+)^{j+m'} (\hat{a}_-^+)^{j-m'} \qquad (8)$$

$$\exp(i\Theta \hat{J}_y) \exp(-i\Theta \hat{J}_y) \mid 00 \rangle$$

which will be performed by means of the well known expansion theorem:

$$\exp(\hat{B}) \ \hat{A}^{k} \exp(-\hat{B}) = [\exp(\hat{B}) \ \hat{A} \exp(-\hat{B})]^{k}$$

$$= (\hat{A} + [\hat{B}, \hat{A}] - + \frac{1}{2!} [\hat{B}, [\hat{B}, \hat{A}] -] - + \dots)^{k}$$

$$= (\sum_{S=0}^{\infty} \frac{1}{S!} {\{\hat{B}^{S}, \hat{A}\}} -)^{k}.$$
(9)

In the present case, the \hat{B} operator is realized by $(-i \Theta \hat{J}_y)$ and the \hat{A} operator by \hat{a}_+^+ and \hat{a}_-^+ , respectively. The commutator $[\hat{B}, \hat{A}]_-$ is $(\Theta/2) \hat{a}_-^+$ and $-(\Theta/2) \hat{a}_+^+$ in this special case. Therefore one obtains $\exp(-i \Theta \hat{J}_y) \hat{a}_+^+$ (10)

$$\exp(i \Theta \hat{J}_{\nu}) = \hat{a}_{\perp}^{+} \cos(\Theta/2) + \hat{a}_{\perp}^{+} \sin(\Theta/2),$$

$$\exp\left(-i\,\Theta\,\hat{J}_y\right)\,\hat{a}_-^{\,+}\tag{11}$$

$$\exp(i \Theta \hat{J}_y) = \hat{a}_-^+ \cos(\Theta/2) - \hat{a}_+^+ \sin(\Theta/2).$$

As the operator $\exp(-i\,\Theta\,\widehat{J}_y)$ contains normalordered annihilation operators, all terms except the first one vanish in the series expansion. The final result for $d_{m\,m'}^{(j)}(\Theta)$ is written with the binomial theorem:

$$d_{m,m'}^{(j)}(\Theta) = [(j+m)! (j-m)! (j+m')! (j-m')!]^{-1/t}$$

$$\sum_{k=0}^{j+m'} \sum_{l=0}^{j-m'} (-1)^{l} {j+m' \choose k} {j-m' \choose l} \cos^{(2j-k-l)}(\Theta/2)$$

$$\sin^{(k+l)}(\Theta/2) \langle 00 | (\hat{a}_{+})^{j+m} (\hat{a}_{-})^{j-m} \qquad (12)$$

$$(\hat{a}_{+}^{+})^{j+m'-k+l} (\hat{a}_{-}^{+})^{j-m'-l+k} | 00 \rangle.$$

The matrix element vanishes for all cases

$$j+m \neq j+m'-k+l$$
 and/or
$$j-m \neq j-m'-l+k \ . \tag{13}$$

If the expressions are equal, the matrixelement is (j+m)! (j-m)!. By easy trigonometric manipulations the $d_{m,m'}^{(j)}(\Theta)$ can be brought to the customary form of Jacobi-polynomials.

¹ E. P. WIGNER, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York 1959.

² J. Schwinger, On Angular Momentum, reprinted in: Quantum Theory of Angular Momentum, L. C. BIEDENHARN and H. VAN DAM, eds., Academic Press, New York 1965.